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We generalize the notion of coherent states to arbitrary Lie algebras by making
an analogy with the GNS construction in C*-algebras. The method is illustrated
with examples of semisimple and nonsemisimple finite-dimensional Lie algebras
as well as loop and Kac±Moody algebras. A deformed addition on the parameter
space is also introduced simplifying some expressions and some applications to
conformal field theory are pointed out, e.g., differential operator and free field
realizations found.

1. INTRODUCTION

For the harmonic oscillator one can define coherent states, i.e., states

which are eigenstates of the creation operator a ² (see, e.g., Itzykson and

Zuber 1985). These are given by (note: unnormalized!)

| z & : 5 e za ²
| 0 & (1)

where | 0 & is the vacuum state (the zero-particle state of the Fock space) and

z is some arbitrary complex number. These states are overcomplete

^ z | z8 & : 5 p(zÅ , z8) 5 e 2 zz8/2 (2)

where zÅ is the complex conjugate of z P C . We can then normalize by

dividing | z & by ! p (zÅ , z) 5 exp( 2 1±4 | z | 2). The relevance of these states lies in

their intimate connection with functional integrals. Given an operator A,
we can construct its Bargmann kernel AÄ , which is then a function of two

complex variables
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AÄ (z, z8): 5
^ z | A | z8 &
^ z | z8 &

(3)

and a functional integral is then defined as

# exp F 1

2
(zÅ fz 8f 1 zÅ i z8i )

1 #
tf

ti 1 1

2i
(zÅ zÇ 8 2 zÅ zÇ 8) 1 HÄ (z, z8) 2 dt G $(z, z8) : 5 U (zf , tf; zi , ti) (4)

where U (zf , tf ; zi , ti) is the time-development operator and where the measure

is defined as the limit $ (z, z8) 5 limn ® ` (dzndz8n /2 p i).
For fermionic degrees of freedom, one would define coherent states in

a similar way, but with the complex parameter z replaced by a Grassmann

number h (Itzykson and Zuber, 1985).

Now, the harmonic oscillator is but one particularly simple example of

a physical system described by a Lie algebra. In this case the algebra is A1 .
sl2 . su2 . so3,

[a ² , a] 5 n, [n, a ² ] 5 a ² , [n, a] 5 2 a (5)

which is the simplest nontrivial semisimple Lie algebra.

Generalizations to other semisimple Lie algebras have been made

(Klauder and Skagerstam, 1985). One considers a (usually compact) Lie

group G acting on some space X. Starting with a fiducial vector | x & , x P X,

one defines | g & 5 exp(T (g)) | x & , where T is the appropriate representation.

The geometric setting for this is the Borel±Weil±Bott construction (see, e.g.,
Nash, 1991). One first considers G as a fiber bundle over G /H with fiber H,

and then constructs a holomorphic line bundle L l from a map l : H ® S 1,

l a highest weight. The Peter±Weyl theorem then states that L 2(G) .
% l V l ^ V *l , where V l denotes the set of cross sections of the line bundle

L l , i.e., V l 5 G (L l ). The functions in V l are annihilated by elements of G 2 ,

the Lie group of the algebra g 2 given by a root decomposition with respect
to h, the Lie algebra of H (the Cartan algebra).

We want to propose a simple, constructive, and natural procedure which

applies to nonsemisimple Lie algebras and to Kac±Moody algebras, too. Let

us note that the definition of a coherent state depended on the following

ingredients: (1) a root decomposition (in order to specify the creation opera-

tors), (2) a representation, and (3) a vacuum state | 0 & in the corresponding
vector space (the Fock space). It is natural to attempt to construct all of this

out of the structure of the algebra itself. In this way it becomes similar to

the GNS construction known from operator algebras, in which one uses the

structure of the algebra (C* or just Banach) ! to construct a natural Hilbert
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space * with a natural cyclic vector (i.e., the vacuum state) denoted by j , such

that * 5 ! j (the algebra generates the Hilbert space) and ! is isomorphic to

a subalgebra of @(*), the algebra of bounded operators on *. See, e.g.,
Murphy (1990) and Wegge-Olsen (1993).

2. THE CONSTRUCTION

We will generalize the root decomposition in the following way. Suppose

we can write the Lie algebra (as a vector space) as

g 5 g0 % o
a P D +

g a % o
a P D 2

g a (6)

with

[g a , g b ] # g a 1 b , a 1 b Þ 0 (7)

[g a , g 2 a ] # g0 (8)

[g0, g0] 5 0 (9)

where a , b are elements of some vector space of dimension $ dim g0. We
do not require dim g a # 1, nor do we require n a P D + ø D 2 ø {0} [ D Þ
n 5 6 1, 0. Hence we will allow roots a without a corresponding mirror

image 2 a , or with, e.g., 2 a also a root. We will also allow more than one

linearly independent generator in each g a .

Roots which satisfy the usual requirements (each root space having

dimension one, and n a a root only if n 5 6 1, 0) will be called proper, and
will thus generate a semisimple subalgebra, whereas the remaining roots will

be called pseudo roots. For Kac±Moody algebras the real roots are then

proper, whereas the imaginary ones are pseudo roots (but each space g a is

one dimensional). In this case the proper roots span the corresponding finite-

dimensional Lie algebra.

As for semisimple Lie algebras, we will draw the roots as vectors in
some (for finite-dimensional algebras) finite-dimensional space. If there is

more than one independent generator in a given g a , then the corresponding

arrow is drawn differently: if dim g a 5 2, then we will draw the arrow as

Ý , whereas for dim g a $ 3, we will include the dimensionality as a subscript,

Ý d , with d 5 dim g a .

Let us consider some examples. The trivial Lie algebra F where F is
some field (e.g., F 5 R , C ) is then drawn as a simple arrow - , whereas F 2

is drawn as Ý . These are of course Abelian. For an example of a non-Abelian

algebra, consider the Heisenberg algebra in a one-dimensional space h1; this

is drawn as
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-
Ý

where the generators of Ý are denoted by q, p and where the generator of

the uppermost arrow is i " 1. This corresponds to a decomposition

h1 5 g1 % g2 (10)

where dim g1 5 2 and dim g2 5 1, [g1, g1] 5 g2. Here g0 [ 0 and there

are no negative roots; all roots are pseudo roots, denoted by 1, 2. One should

note that for nonsemisimple Lie algebras the root decomposition will in
general be nonunique. An alternative decomposition for h1 would have been

g 2 1 % g0 % g1 with each component being one dimensional; g 2 1 5 F p , g0

5 F (i " 1), g1 5 F q. This latter choice, however, would obscure the very

strong difference between the nilpotent algebra h1 and the semisimple one

A1. We have chosen the decomposition which most clearly brings out this
difference between the two algebras.

When g0 Þ 0 but all roots are still pseudo, we will denote the elements

of g0 by a circle. Consider, for instance, the unique two-dimensional non-

Abelian algebra [e, f ] 5 e. This has a decomposition g0 % g1 where g0 5
F f and g1 5 F e. The root diagram is

-
C

We conjecture that all finite-dimensional Lie algebras can be treated in

this manner.

Consider extensions of a semisimple Lie algebra, say A1 5 sl2 5 su2 5
so3 for simplicity. Some of the ways of extending it by pseudo roots are
shown in Table I. The Jacobi identity fixes most of the algebraic relations

uniquely, and the corresponding Lie algebras are listed in the table, too.

The second example in the table, the one where the new generators are

es , es 6 r, will be called the fan algebra, because of the shape of the root

diagram, and will be the standard example together with the Heisenberg

algebra of a nonsemisimple Lie algebra. We will denote the fan algebra by
f3(A1) or just f3, the subscript 3 referring to the three extra roots we have

added to A1, namely es , es 6 r. Similarly one can define f2n 1 1(A1) for n $ 1.

Now given a Lie algebra g, in order to define coherent states, we must

first of all find a natural vector space for it to act upon. The obvious choice

is the underlying vector space of the algebra, i.e., the algebra itself. The
corresponding representation is the adjoint one. Furthermore, the roots (proper

as well as pseudo) lying in D + are the natural candidates for creation operators.

Note, however, that for pseudo roots it is purely a matter of convention

whether one includes a root in D + or in D 2 . The two different choices are

each other’ s duals.
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Table I. The First Nonsemisimple Lie Algebras Which Can Be Built from A1 by Adding

Pseudo Roots.a

diagram algebra

g . A1 % F es

[es , e 6 r] 5 Ns, 6 res6 r es P Z (g)

g . A1 % F es % F e2s

g . A1 % ( F es)
2 [e (1)

s , e (2)
s ] 5 0

g . A1 % h1

a The % denotes direct sum as Lie algebras and not just (as in the text) as vector spaces.

The basic ingredient is then the element

x a ( z ) 5 e z ade a , a P D + (11)

It turns out that this quantity is important in its own right, as it generates
what is known as the Chevalley group (Carter,1989). In order to define a

vector | z & we must specify a ª vacuum stateº | 0 & : 5 v0. This state, in analogy

with the cyclic vector of the GNS construction, must satisfy

ad e a v0 5 0 for a P D 2 (12)

span{x a ( z )v0} a P D 1 5 g (as a vector space) (13)

ad hi v0 5 l i v0, hi P g0 (14)

In words: the vacuum is annihilated by the elements corresponding to negative

roots (the annihilation operators), is an eigenvector of elements of g0 (the

generalized Cartan algebra, the ª number operatorsº ), and generates the entire

vector space when acted upon by elements of g a , a P D +. This is the Lie

algebra analogue of the GNS construction for operator algebras.

We then define the coherent states as

| z & : 5 exp ( o
a P D 1

z a ad e a )v0 (15)
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where z 5 ( z a ) P F | D 1 | . For the ª dualº element, the bra ^ z | , there are two,

in general, inequivalent possibilities. One uses the generalized Chevalley

involution2

{e a } ® { 2 f b } hi ® 2 hi (16)

with a P D +, b P D 2 , i 5 1, . . . , dim g0. Since for g nonsemisimple, | D + | .
| D 2 | this ª involutionº is not bijective. The other possibility is to let ^ z | be
simply the complex conjugate transpose of | z & , i.e.,

^ z 8 | : 5 v t
0 exp( 2 o

a P D 1

z Å 8a ad e a )t (17)

where the superscript t denotes transpose. This is the definition we will

choose. For semisimple Lie algebras the two definitions coincide.

These coherent states are overcomplete and we define

p ( z Å , z 8) : 5 ^ z | z 8 & (18)

Then p is some polynomial when the algebra is semisimple and a holomorphic

function otherwise (for semisimple Lie algebras the adjoint representation is

nilpotent, so the exponentials are finite-order polynomials). One should also

note that the coherent states are not normalized. This can simply be done by
dividing by ! p ( z Å , z ).

A particularly important subject to study is central extensions. Suppose

we have a Lie algebra g, and then form a central extension gÄ 5 g % F c; we

then would like to know how coherent states for g are related to those of gÄ .
Write the algebraic relations of the centrally extended algebra as

[e a , e b ] 5 N a , b e a 1 b 1 c a b

[e a , f a ] 5 a ihi 1 c a , 2 a

[e a , hi] 5 2 a i e a 1 c a i

[hi , hj] 5 cij

etc.; then the adjoint representation becomes

ad e a 5 1 ad e a | 0 0
-

c a 0 2 , ad f a 5 1 ad f a | 0 0
-

c 2 a 0 2 , ad hi 5 1 ad hi | 0 0
-

c i 0 2
(19)

2 We use the following convention: e a corresponds to a creation operator, i.e., a P D +, whereas
f a are the annihilation operators, i.e., a P D 2 . For proper roots we have a Chevalley involution
v : e a % 2 f 2 a , hi

j 2 hi. Furthermore, we will always choose | D + | $ | D 2 | , i.e., pseudo roots
without a mirror image will be considered positive.
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where (
-

c a ) b 5 c a b and where ad e a | 0 denotes the matrix representing ad e a

in g.

Writing the new vacuum vector as vÅ 0 5 (v0, 0), we get

| z & 5 | z 0 1 o
a , b

z a c a , b v b
0 | c & : 5 | z & 0 1 c ( z , v0) | c & (20)

where we have defined | c & as the basis vector of gÄ (as a vector space) which

is in the direction of the central element c, and where | z & 0 denotes the coherent

states of g. Since c is a central element, it follows that

p ( z Å , z 8) : 5 ^ z | z 8 & 5 p0( z Å , z 8) 1 c ( z , v0)*c ( z 8, v0) (21)

in the obvious notation, where p0 is the normalization polynomial of g. We
will now consider some examples.

2.1. Semisimple Lie Algebras

We will explicitly construct the coherent states for all four seimisimple

Lie algebras of rank at most two, i.e., A1, A2, B2, G2, and also make some

general statements.

The Lie algebra A1 . sl2 . su2 . so3 is very quickly treated. We have

(ad e)2 5 (ad f )2 5 0, so ( v denoting the Chevalley involution)

x ( z ) 5 1 1 0 0
1±2 z 2 1 z
2 z 0 1 2 , v *x ( z Å ) : 5 e 2 z

Å
adf 5 1 1 2 1±2 z Å 2 z Å

0 1 0

0 2 z Å 1 2 (22)

The eigenvector of ad h annihilated by ad f is v 5 (1, 0, 0) (with the weight

l 5 2), which leads to the following set of coherent states:

| z & 5 v 1
1

2
z 2 1 010 2 2 z 1 0

0

1 2 (23)

which we will also write as

| z & 5 | 1 & 1
1

2
z 2 | 2 & 2 z | 3 & (24)

with | i & being the ith canonical basis vector for F 3 (i.e., g considered as a vector

space). The dual state ^ z | is obtained from this by making the substitutions z ®
2 z and | i & ® ^ i | , i.e.,

^ z | 5 ^ 1 | 1
1

2
z 2 ^ 2 | 1 z ^ 3 | (25)
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The quadratic (in each variable, i.e., quartic in all) polynomial for the normal-

ization becomes

^ z | z 8 & 5 p ( z , z 8) 5 1 2 z z 8 1
1

4
z 2 z 82 (26)

as one quickly sees.

This is not the same as the standard coherent states for the harmonic

oscillator (1) because we are using the adjoint representations, which is
nilpotent, i.e., $ p: (a ² ) p 5 0. The standard coherent states corresponds to

p 5 ` , which makes the algebra into a C*-algebra (the bilateral shift algebra).

The next algebras are the three rank-two simple Lie algebras A2 . su3, B2 .
so4, G2. In these simple cases we can actually also compute the exponential

of the adjoint representation quite easily.

For A2 . su3 . sl3 we have the following simple roots: 6 r, 6 s, 6 (r 1
s), and the two Cartan elements hr , hs. In this case

(ad er)
3 5 (ad es)

4 5 (ad er 1 s)
3 5 0 (27)

The vacuum vector is v 5 (0, 0, 1, 0, 0, 0, 0, 0) 5 | 3 & with weight l 5
(1, 1), and we get

| z & : 5 (e z rader 1 z sades 1 z r
1 s

ader
1 s

) ? v (28)

5 2 Nr, s z s | 1 & 1 Nr, s z r | 2 & 1 | 3 &

1 1 16 z r(2Nr, s z s(2 z r 2 z s) 1 3 z r 1 s(Nr, sN 2 r, r 1 s 2 2)) 2 | 4 &

1 1 16 z s(Nr, s z s(2 z s 2 z r) 2 3 z r 1 s(1 1 Nr, s N 2 s, r 1 s)) 2 | 5 &

1 F 1

24
Nr, s z r z 2

s( z r(4Ns, 2 r2 s 2 Nr, 2 r 2 s) 1 2 z s(Nr, 2 r 2 s 2 Ns, 2 r 2 s))

1
1

6
z s z r 1 s( z r(Nr, s 2 Nr, 2 r 2 s (1 2 Nr, s N 2 s, r 1 s)

2 Ns, 2 r 2 s(2 1 Nr, sN 2 s, r 1 s)) 2 z 3
r 1 s) G | 6 &

1 F Nr, s z s 1 z r 2
1

2
z s 2 2 z r 1 s G | 7 & 2 F Nr, sz s 1 12 z r 2 z s 2 1 z r 1 s G | 8 &

(29)
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The normalization of the coherent states become

p ( z , z 8) : 5 1 2 N 2 r, r 1 sNr, s z r z 8r 1 N 2 s, r 1 sNr, sz s z 8r

1 1 z r 1 s 2
1

2
N 2 s, r 1 s z r z s2 1 Nr, s z 8r z 8s 2

1

2
Nr, s z 82

s 2 z 8r 1 s 2
2 1 z r 1 s 2

1

2
N 2 r, r 1 s z r z s 2 1 12 Nr, s z 8r z 8s 2 Nr, s z 82

s 1 z 8r 1 s 2
2

1

36
z r z 8r ((N 2 r, r 1 s 2 2N 2 s, r 1 s) z r z s 1 3 z r 1 s(1 1 N 2 r, r 1 sNs, 2 r 2 s))

3 (2Nr, s z 8s(2 z 8r 2 z 8s ) 2 3 z 8r 1 s(Nr, sN 2 r, r 1 s 1 2))

1
1

36
z s z 8s ( z r z s(N 2 s, r 1 s 2 2N 2 r, r 1 s) 1 3 z r 1 s(1 1 N 2 s, r 1 sNr, 2 r 2 s))

3 (Nr, sz 8s( z 8r 2 2 z 8s) 1 3 z 8r 1 s(1 2 Nr, sN 2 s, r 1 s))

1 F 1

8
z 2

r z 2
sN 2 r, 2 s(N 2 s, r 1 s 2 N 2 r, r 1 s

1
1

6
z r z s z r 1 s(N 2 r, r 1 s(1 1 N 2 r, 2 sNs, 2 r 2 s)

1 N 2 s, r 1 s(1 1 N 2 r, 2 sNr, 2 r 2 s)) 2 z 3
r 1 s2

3 1 1

24
Nr, sz 8r z 82

s ( z 8r(4N 2 s, r1 s 2 Nr, 2 r 2 s) 1 2 z 8s(Nr, 2 r 2 s 2 Ns, 2 r 2 s))

1
1

6
z 8s z 8r 1 s( z 8r(Nr, s 2 Nr, 2 r 2 s(1 2 Nr, sN 2 s, r 1 s)

2 Ns, 2 r 2 s(2 2 Nr, sNs, 2 r2 s)) 1 Nr, s z 8s z 82
r 1 s) 2 (30)

which is a polynomial of sixth degree with the z 8 and z variables appearing

to at most the third power.

For B2 . so(4) we have the roots 6 r, 6 s, 6 (r 1 s), 6 (2r 1 s), the

Cartan elements once more denoted by hr , hs . Thus

(ad er)
4 5 (ad es)

3 5 (ad er 1 s)
4 5 (ad e2r 1 s)

3 5 0 (31)
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Then ( ( a . 0 z a ad e a )8 5 0 and the exponential becomes easy to calculate.

The lowest weight is l 5 ( 2 6, 5) and the corresponding ª vacuumº vector

is v 5 (0, 0, 0, 1, 0, 0, 0, 0, 0) 5 | 4 & ; one easily checks that this is annihilated
by the ad f terms. The coherent states thus become

| z & 5 2
1

2
Nr, r 1 s(Nr, s z r z s 1 2 z r 1 s) | 1 &

1
1

2
Nr, sNr, r 1 s z 2

r | 2 & 1 Nr, r 1 s z r | 3 & 1 | 4 &

1
1

6
z r[Nr, sNr, r 1 s z 2

r z s 1 Nr, r 1 s(Nr, sNr 1 s, 2 r 2 1) z r z r 1 s

1 (15 1 3Nr, r 1 sN2r 1 s, 2 r) z 2r 1 s] | 5 &

2 F 1

8
Nr, sNr, r1 s z 2

r z 2
s 2

1

6
Nr, r 1 s(3 2 Nr, sNr1 s, 2 s) z r z s z r1 s

1
1

2
Nr, r 1 sNr 1 s, 2 s z 2

r1 s 2 3 z s z 2r 1 s G | 6 &

1 F 1

120
Nr, r 1 sNr, s(4Ns, 2 r 2 s 2 3Nr, 2 r 2 s) z 3

r z 2
s

1
1

24
Nr, r 1 s(Nr, s 1 Nr, 2 r 2 s(3 2 Nr, sNr 1 s, 2 s)

1 Ns, 2 r2 s(Nr, sNr 1 s, 2 r 2 1)) z 2
r z s z r 1 s

1 1 Nr, 2 r 2 s 2
5

6
Ns, 2 r2 s 1

1

6
(Nr, r 1 sNs, 2 r 2 sN2r 1 s, 2 r

2 Nr, r 1 sNr, sN2r 1 s, 2 r 2 s) 2 z s z 2r

1
1

2
(1 2 Nr, r 1 sN2r 1 s, 2 r 2 s) z r1 sz 2r 1 s

1
1

6
Nr, r 1 s(2 2 Nr, 2 r2 sNr 1 s, 2 s) z 3

r1 sG z r | 7 &

1 F 1

720
Nr, 2 2r 2 sNr, r 1 sNr, s(4Ns, 2 r 2 s 2 3Nr, 2 r 2 s) z 4

r z 2
s
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1
1

120
Nr, r 1 s(Nr, 2 2r 2 s(3Nr, 2 r 2 s 1 Nr, s 2 Nr, 2 r 2 sNr, sNr 1 s, 2 s

2 Ns, 2 r2 s 1 Nr, sNr 1 s, 2 rNs, 2 r 2 s) 1 4Nr, sNr 1 s, 2 2r 2 s) z 3
r z s z r 1 s

1
1

6
(Nr, 2 2r 2 s(1 2 Nr, r 1 sN2r 1 s, 2 r 2 s)

1 Nr 1 s, 2 2r 2 s(Nr, r1 sN2r1 s, 2 r 2 5) 1 Nr, r 1 s) z r z r 1 s z 2r 1 s

2 2 z 4
2r 1 s 1

1

24
(Nr, r1 s(2Nr, 2 2r 2 s 2 Nr, 2 r 2 sNr 1 s, 2 sNr, 2 2r 2 s

2 Nr 1 s, 2 2r 2 s 1 Nr, s Nr, 2 2r2 sNr 1 s, 2 2r 2 s) z 3
r 1 s

1 (6Nr, 2 r 2 sNr, 2 2r 2 s 1 5Nr, r 1 sNr, s 2 5Nr, 2 2r 2 sNs, 2 r 2 s

1 Nr, 2 2r 2 sNr, r 1 s(Ns, 2 r 2 sN2r 1 s, 2 r 2 Nr, sN2r1 s, 2 r 2 s) z s z 2r 1 s)] | 8 &

1 F 2

3
Nr, sNr, r1 s z 2

r z s 2
1

2
Nr, r 1 s z r z r 1 s 2 5 z 2r1 s G | 9 &

1 F 3

2
Nr, r 1 s z r z r1 s 2

1

2
Nr, r 1 sNr, s z 2

r z s 1 6 z 2r1 s G | 10 & (32)

From this we can get the coherent states for so(2, 2) and so(3, 1) by multiplying

certain of the e a , f a by a factor i [using so(3, 1) . su2 ^ C , so(2, 2) . su(1, 1)

% su(1, 1) with su(1, 1) obtained from su2 by multiplying one of the e, f-
generators by i].

The ª dualº state ^ z | is, as always, found by making the substitutions

z i ® 2 z i and replacing the kets | i & with the corresponding bras. We will not,

however, write down the explicit formula for the normalization polynomial

p ( z , z 8) 5 ^ z | z 8 & , as this is far too big an expression. One should note,

though, that finding it is a rather easy and straightforward task (at least with

a computer).
Finally, the exceptional Lie algebra G2 has the roots 6 r, 6 s, 6 (r 6 s),

6 (r 1 2s), 6 (2r 1 s), whence

(ad er)
4 5 (ad es)

4 5 (ad er 1 s)
4 5 (ad er1 2s)

4 5 0, (33)

(ad e2r 1 s)
2 5 (ad er 2 s)

2 5 0

The ª vacuumº vector is v 5 (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), which

has the weight l 5 ( 2 1,2). An explicit calculation shows ad fa ? v 5 0, as

it should be. We get
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| z & 5 o
14

n 5 1

an | n & (34)

where (only writing the simplest coefficients)

a1 5 2 Nr, r 1 s 1 12 Nr, s z r z s 1 z r 1 s 1
1

6
Nr, sNr 2 s, r1 2s z 2

s z r 1 2s 2
a2 5 2

1

24
Nr, sNr, r 1 sNr 2 s, r 1 2sNr 2 s, r z 2

s z 2
r1 2s

1
1

6
Nr, sNr, r 1 s(Nr 2 s, r 1 2s 2 Nr 2 s, r) z r z s z r 1 2s

1
1

2
Nr, sNr, r 1 s z 2

r 1
1

2
(Nr 2 s, rNr 1 s, r 1 Nr 1 s, r 1 2sNr 2 s, r 1 2s) z r 1 s z r 1 2s

a3 5 Nr, r 1 s z r 1
1

2
Nr, r 1 sNr 2 s, r1 2s z s z r 1 2s

a4 5 1

a5 5 Nr 2 s, r 1 2s z r 1 2s

a6 5 2
1

24
Nr, r 1 sNs, r 2 s(4Nr, s z r z 2

s 2 12 z s z r 1 s 1 Nr, sNr 2 s, r 1 2s z 3
s z r 1 2s)

:

a13 5 z r 2 s 2
1

120
Nr, sNr, r 1 sNr 2 s, r 1 2s(Ns, r 2 s 2 3Nr, r 2 s) z 3

s z 2
r 1 2s

2
5

2
Nr, r 1 s z r z r 1 s 1

1

2
Nr 2 s, r 1 2sz r 1 2s z 2r 1 s

1
1

24
Nr, sNr, r 1 s(Nr 2 s, r 1 2s 1 3Nr, r 2 s 2 Ns, r 2 s) z r z 2

s z r 1 2s

1
1

6
Nr, sNr, r 1 s z 2

r z s 1
1

6
(3Nr 2 s, r 1 2s(Nr 1 s, r 1 2s 2 Nr, r1 s)

2 Nr, r 1 s(Ns, r 2 s 2 3Nr, r 2 s)) z s z r 1 s z r 1 2s

a14 5 2 2 z r 2 s 2
1

120
Nr, sNr, r 1 sNr 2 s, r 1 2s(Ns, 2 r 2 s 1 2Nr, r 2 s) z 3

s z 2
r 1 2s

1 3Nr, r 1 s z rz r 1 s 2
7

2
Nr 2 s, r1 2s z r 1 2s z 2r1 s 2

1

6
Nr, sNr, r1 sz 2

r z s
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2
1

24
Nr, sNr, r 1 s(Nr 2 s, r 1 2s 1 2Nr, r 2 s 1 Ns, r 2 s) z r z 2

s z r 1 2s

1
1

6
(Nr 2 s, r 1 2s(5Nr, r 1 s 2 2Nr 1 s, r 1 2s)

2 Nr, r 1 s(Ns, r 2 s 1 2Nr, r 2 s)) z s z r 1 s z r 1 2s

In this case the normalization polynomial becomes of fifth order in each

variable, but will not be written out explicitly (the Mathematica output is 37

pages long!).

Before we close this section we make some general comments. The

normalization polynomials can be expressed in terms of the structure constants
Nr,s, the Cartan matrix Ars, and the coefficients in the Baker±Campbell±

Hausdorff series, which we denote by bi. There is some subtlety involved in

this, as even though ^ z | can be obtained from | z & by the simple procedure

z i ® 2 z i and exchanging bras for kets, it does not follows that ^ z | z 8 & is the

naive inner product of these two. This is so because v *x ( z )x ( z 8) can get
extra contributions to its Cartan algebra-valued terms (i.e., terms proportional

to ad hi). These extra terms arise from the Baker±Campbell±Hausdorff (BCH)

formula. Obviously the first contribution is from exp( 2 S a
1±2 z a z 8a a i ad hi),

which is precisely the first term in the BCH formula, b1 5 1±2 . There will also

be a contribution from the next term, b2 [[ad f a , ad e b ], ad e g ] 1 b2 [ad f a ,

[ad f b , ad e g ]], whenever g 5 a 2 b in the first term or g 5 a 1 b in the
second part. The explicit form of the contribution will be b2(N 2 a , b l i ( a i 2
b i) 1 N 2 b , 2 a l i ( a i 1 b i)) with b2 5

1

12. The general pattern should now be clear.

2.2. Nonsemisimple Lie Algebras

We will consider only a few examples. First the Heisenberg algebra h1.

In our notation the basis is

[e (i)
1 , e ( j )

1 ] 5 e ije2, i, j 5 1, 2 (35)

where, in standard notation, e (1)
1 5 qÃ, e (2)

1 5 pÃ, e2 5 2 i " 1Ã. Thus D + 5 {1, 2}

with dim g1 5 2, dim g2 5 1. The adjoint representation reads

ad e (1)
1 5 1 0 0 0

0 0 2 1

0 0 0 2 , ad e (2)
1 5 1 0 0 1

0 0 0

0 0 0 2 , ad e2 5 0

(36)
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It is a general feature that central elements do not appear in this formalism,

as they are represented by the zero matrix. The vacuum vector is v 5 (0, 0, 1)

and we have

| z 1, z 2 & 5 exp 1 0 0 z 2

0 0 2 z 1

0 0 0 2 1 001 2 (37)

5 1 z 2

2 z 1

1 2 (38)

We get

p : 5 ^ z 1, z 2 | z 81, z 82 & 5 1 1 z 1 z 81 1 z 2 z 82 : 5 1 1 z ? z 8 (39)

where we have written z 5 ( z 1, z 2) P C 2 in the last equality. Hence the norm

of a coherent state is p ( z , z ) 5 1 1 | z |2. Since there are no poles in this
expression we can normalize the states

| z ) : 5
| z &

1 1 | z |2 (40)

The set of coherent states span the Hilbert space R 3 ^ C ( z , z ), where z P C 2.3

The next example is the unique non-Abelian Lie algebra of dimension two,

[e, h] 5 e (41)

The adjoint representation reads

ad e 5 1 0 0

2 1 0 2 , ad h 5 1 2 1 0

0 0 2 (42)

from which we get

x ( z ) 5 e z ade 5 1 1 z ad e (43)

3 Standard algebraic notation: F [x] denotes the set of polynomials in one variable x and coeffi-
cients from the field F , F (x) is the corresponding field of fractions, F (x) 5 {p(x)/q (x) | p (x),
q (x) P F (x),q (x) Þ 0}. Furthermore, F [[x]] denotes the set of formal power series and F ((x))
that of formal Laurent series, F ((x)) 5 F [[x, x 2 1]].
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With v 5 (1, 0) we then get the coherent state

| z & 5 1 1

2 z 2 (44)

from which we get

p ( z , z 8) 5 1 1 z z 8 (45)

This is exactly the same as for the Heisenberg algebra except that z is now

one dimensional, z P C , and not two dimensional.

The final example we consider is the ª fan algebraº f3. The algebraic

relations are

[es , et] 5 H 0, t 5 s, s 6 r

Ns 6 res 6 r, t 5 6 r
(46)

[h, et] 5 H 0, t 5 s, s 6 r

6 2e 6 r, t 5 6 r
(47)

whence (the ordering being chosen to be r, 2 r, s, s 1 r, s 2 r, 0)

ad er 5 1
0 0 0 0 0 2 2

0 0 0 0 0 0

0 0 2 Ns, r 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0 2
ad es 5 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Ns, r 0 0 0 0 0

0 Ns, 2 r 0 0 0 0

0 0 0 0 0 0 2 (48)

ad es 6 r
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for the positive roots (pseudo as well as proper) and finally for the negative

root and the ª Cartan elementº

ad e 2 r 5 1
0 0 0 0 0 0

0 0 0 0 0 2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 2 Ns, 2 r 0 0 0

2 1 0 0 0 0 0 2 ,

ad h 5 1
2 0 0 0 0 0

0 2 2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 2 (49)

It is now straightforward to compute the normalization polynomial p, and
we get

p ( z , z 8) 5 1 2 2 z 8r z r 1 z 82
r z 2

r (50)

with the coherent states being [v 5 (0, 1, 0, 0, 0, 0) 5 | 2 & , just as for A1,
upon which this algebra is built after all]

| z & 1
2 z 2

r

1

0

2 1±3 z sz 2
rNs, r

z sNs, 2 r

z r 2 (51)

Notice that p is independent of z s.

Let us summarize our experiences with nonsemisimple Lie algebras so

far. First we have noticed that central elements will not contribute to the ad e
or ad f terms, but at most through the commutators, i.e., only if they can be
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written as c 5 [g1, g2], g1, g2 P g (hence if and only if the central element

c lies in the derived subalgebra g8 5 [g, g]). Second we notice that the

normalization polynomial need not depend on all the variables z a . The exam-
ple of the ª fan algebraº f3 showed this quite clearly. The normalization

polynomial will, however, always depend on all the proper roots, since these

span a semisimple subalgebra. In general, variables z a corresponding to g a ,
g8 5 [g, g] will contribute, unless of course g a # Z (g), where Z (g) denotes

the center of the Lie algebra. For a semisimple algebra, g8 5 g and Z (g) 5
0, so all variables will appear.

2.3. Loop and Kac ± Moody Algebras

Since this construction is based directly on the roots and the correspond-

ing structure constants and Cartan matrices it is quite natural to attempt an
extension to Kac±Moody algebras. Recall (Kac, 1990) that these can be

defined in terms of generalized Cartan matrices as follows. An n 3 n matrix

A is called a generalized Cartan matrix if it satisfies

Aii 5 2, Aij P 2 N 0, Aij 5 0 Þ Aji 5 0, i, j 5 1,2, . . . , n

where N 0 5 N ø {0} 5 {0, 1, 2, 3, . . .} is the set of nonnegative integers.

For the n primitive roots a i (i.e., the ones spanning the entire root space) the

algebraic relations are then

[ei , fj] 5 d ijhi

[hi , ej] 5 A ijej

[hi , fj] 5 2 Aij fj

[hi , hj] 5 0

with ei 5 e a i, fi 5 f a i, and hi elements of the Cartan subalgebra h, hi 5 ^ a i , h & ,
h P h.

Furthermore, for the particularly simple case of affine Kac±Moody

algebras, the set of imaginary roots becomes very simple, namely D im 5
Z d 5 {0, 6 n d | n 5 1, 2, . . .}. Such infinite-dimensional Lie algebras can
be represented as central extensions of loop algebras. Thus it seems advanta-

geous to begin by considering loop algebras.

Given a finite-dimensional Lie algebra, semisimple or not, g, we form

its loop algebra gloop : 5 C ` (S 1) ^ g by defining the generators e n
a 5

e a z n, f n
a 5 f a z n, h n

i 5 hiz
n, where e a , f a , hi are the generators of g and where

z P S 1 (i.e., z P C with | z | 5 1). If g1, g2 are two arbitrary elements of g,

then we define [g n
1, g n

2] 5 z n 1 m [g1, g2], where g n
i 5 gi z

n.
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Now, in this case we can define x ( z ) as

x ( z ) 5 exp 1 o
`

n 5 2 `
o
a

z a , n ad e n
a 2 5 exp 1 o a z a (z) ad e a 2 (52)

where we have defined

z a (z) : 5 o
`

n 5 2 `
z a , nz

n (53)

Hence z a becomes an analytic function S 1 ® C . If | z & is a coherent state for
g, then | z (z) & is a coherent state for the corresponding loop algebra gloop, and

we define the inner product to be

^ z (z) | z 8(z8) & 5 # S1

^ z (z) | z 8(z8) & 0 d (z, z8) dz dz8 (54)

where ^ ? | ? & 0 denotes the inner product in g, i.e., ignoring the dependence on

z, z8. Thus p, the normalization polynomial, becomes a functional of z a (z) P
C ` (S 1) ^ C . Explicitly,

p [ z , z 8] : 5 # S1

p0( z (z), z (z)) dz (55)

where p0 denotes the normalization polynomial of g.

An affine Kac±Moody algebra is, as already mentioned, a nontrivial

central extension of a loop algebra. If g denotes a finite-dimensional Lie

algebra, then the corresponding Kac±Moody algebra is gÃk: 5 gloop % K F ,

where K is the central element and k is its eigenvalue. As we saw in Section
2, central extensions lead to very small modifications of the coherent-states.

We then get

| z , z & 5 | z (z) & 1 c ( z ) | K & (56)

pk[ z , z 8] 5 # S1

( p0( z (z), z 8(z)) 1 c*( z )c ( z 8)) dz (57)

for a general affine Kac±Moody algebra.
Furthermore, using the general relationship for central extensions (20),

we have

c ( z ) 5 c ( z , v0) : 5 o
m,n P Z

o
a , b P D 1

z a , mz mc mn
a b v b

n : 5 k 1 z d

dz
z Z v0 2 (58)
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where c mn
a b are the structure coefficients,

[e m
a , e n

b ] 5 N a , b e m 1 n
a 1 b 1 c mn

a b K (59)

i.e.,

c mn
a b 5 km d m, 2 n k a b (60)

where k a b 5 ( a | b ) is the inner product in root space. We have also defined
v b

n 5 v b , " n.

For nonaffine Kac±Moody algebras not much is known, but we can still

attempt to use our constructive procedure. The set of imaginary roots becomes

more complicated now. But we can write (Kac, 1990)

D im 5 ø
w P W

w (_) (61)

where W is the Weyl group and _ is some subset of the root lattice. So the

basic quantity x ( z ) gets modified accordingly to

x ( z ) 5 exp 1 o
a P D 1

re F z a ad e a 1 o
I, a I P k

o
w P W

e (w, I ) z w( a I), a ad ew( a I) G 2 (62)

where e (w, I ) is some number taking care of the possible multiplicity. In

concrete cases one will then often be able to write z as a function z (z) with

z in some set. But since we do not have any more concrete definition of

either _, W, or D im, we will not be able to do more here.

As a final comment, x ( z ) for Kac±Moody algebras is closely related to
(generalized) screening operator (Fuchs, 1992). One considers an algebra

with generators e a , f a , hi as usual, in some representation (always the adjoint

representation in our case, just some formal representation in conformal field

theory, CFT). Let ^ l | be a lowest weight vector in the appropriate module; then

^ l | e S b x b e b e te a 5 ^ l | e S b (x b 1 V b
a (x)t 1 O(t2))e a

^ l | e 2 te a e S b x b e b 5 ^ l | e tS a 1 O(t2)e S b x b e b

where S a is the screening operator, S a (x) 5 S b
a (x) - b , where S b

a 5 2 V b
a 1

f g a
b x g . The quantity V b

a is the vertex operator. These operators play a crucial

role in conformal field theory, in the construction of free field representation.

3. DIFFERENTIAL OPERATOR AND FREE FIELD
REALIZATIONS

By construction, the algebra g acts on the space *(g) of coherent states

| z & . Since this space * is a space of (vector-valued) functions, *(g) #
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F (( z )) ^ F d, d 5 dim g, it is natural to look for realizations of g in terms

of differential operators. Define - a 5 - / - z a , we then look for quantities E a ,

F a , Hi satisfying

E a ( z , - ) | z & : 5 ad e a | z & (63)

F a ( z , - ) | z & : 5 ad f a | z & (64)

Hi ( z , - ) | z & : 5 ad hi | z & (65)

We can find these quantities by using the BCH formula. Consider the corre-

sponding Chevalley generators x a (t) 5 exp(t ad e a ), x 2 a (t) 5 exp(t ad f a ),

xi (t) 5 exp(t ad hi), and notice that

x a (t)x ( z ) : 5 e t ad e a e S b . 0 z b ade b 5 e S b . 0 z b ade b 1 t S b V b
a ( z )ade b 1 O(t2) (66)

implies

E a ( z , - ) 5 o
b

V b
a ( z ) - b (67)

Awata et al. (1991), Feigin and Frenkel (1990), and Bouwknegt et al.
(1990a,b) give the ª vertex operatorº V b

a in terms of the structure coefficients
f g

a b ; we want to find an expression solely in terms of N a , b and the Cartan

matrix, which are the appropriate quantities to use for a Chevalley basis.

From the definition it follows that

V b
a 5 d b

a 1
1

2 o
g

N g , a d b
a 1 g z g 2

1

4 o
g , d

N g , a N a 1 g , d d b
a 1 g 1 d z g z d 1 . . . (68)

We will write this as

V b
a 5 d b

a o
n $ 1

MnC
b
a ; a 1... a n z a 1 . . . z a n, a , b P D + (69)

in analogy with the notation of Bouwknegt et al. (1990a, b). Straightforward

induction shows (the Bn are the Bernoulli numbers)

Mn 5 ( 2 1)n Bn

n!
(70)

# b
a ; a 1... a n 5 d b

a 1 S a iN a n, a N a n 2 1, a 1 a n . . . N a 1, a 1 a 2 1 ... 1 a n (71)

This follows from the following version of the BCH formula:

e Ae tB 5 exp 1 A 1 t o
`

n 5 0

Mn(adA)nB 1 O (t 2) 2
which is easily proven.
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Similarly, we get

F a 5 o
b

V b
2 a - b 1 o

l

i 5 1

P i
2 a l i (72)

Hi 5 o
b

V b
i - b 1 l i (73)

Such quantities have been introduced in the study of conformal field theories
(CFTs; (Fuchs, 1992; Awata et al., 1991; Feigin and Frenkel, 1990); the only

new things here are the use of the adjoint representation, the new coherent

states following from this, and finally the use of the structure coefficients of

the Chevalley basis, N a , b , and the Cartan matrix, Ai a .

Combining the results from Bouwknegt et al. (1990a,b), with our
reformulation in terms of N a , b we get

V b
2 a 5 o

n
NnC

b
2 a ; a 1... a n z a 1 . . . z a n (74)

V b
i 5 2 ( a V

i | b ) z b (75)

P i
2 a 5 o

n $ 1

1

n!
C i

2 a ; a 1... a n z a 1 . . . z a n (76)

with a V 5 2 a /( a | a ) the co-root of a and ( ? | ? ) denoting the inner product in

root space.

The explicit forms for the coefficients Nn and the #’ s are

Nn 5 o
n 2 m

k 5 0

Bk

k!(n 2 k)!
(77)

# b
2 a ; a 1... a n 5 5

d b
a 1 1 ... 1 a n 2 a N a n, 2 a N a n 2 1, a n 2 a . . . N a 1, a 2 1 ... 1 a n 2 a

if $ i: o
n

j 5 n 2 i a j 2 a 5 0

d b
a 1 1 ... 1 a n 2 i 2 1N a n, 2 a . . . N a n 2 i 2 1, a n 1 ... 1 a n 2 i 2 2 2 a

3 o
l

j 5 1 a jAj, a n 2 i 2 1N a n 2 i 2 2, a n 2 i 2 1 . . . N a 1, a 2 1 ... 1 a n 2 i 2 1

if $ i: o
n

j 5 n 2 i a j 2 a 5 0

(78)

#i
2 a ; a 1... a n 5 2

1

n!
a i d a 1 1 a 2 1 ... 1 a n, a N a n, 2 a . . . N a 2, a 3 1 ... 1 a n 2 a (79)

# b
i; a 1... a n 5 2 d b

a 1 1 ... 1 a nA i a nN a n 2 1, a n . . . N a 1, a 2 1 ... 1 a n

with m 5 m ( 2 a , b 1, . . . , b n) being the smallest integer such that 2 a 1
b 1 1 . . . 1 b n P D +.
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We can use our coherent states to reexpress these results. Introduce first

of all the deformed addition in z -space, ( z , z 8) j z % z 8, where z % z 8 is

defined by

x ( z )x ( z 8) : 5 x ( z % z 8) (80)

The difference between z 1 z 8 and z % z 8 only shows up in the nonprimitive

roots, where the BCH theorem gives correction terms. For the examples of

finite-dimensional semisimple Lie algebras of rank at most two we get the

following explicit results:

g . A1:

z % z 8 5 z 1 z 8

g . A2:

( z % z 8) 5 1
z r 1 z 8r

z s 1 z 8s

z r 1 s 1 z 8r 1 s 1 1±2 Nr, s( z r z 8s 2 z s z 8r) 2
g . B2:

( z % z 8) 5 1
z r 1 z 8r

z s 1 z 8s

z r1 s 1 z 8r 1 s 1 1±2 Nr, s( z rz 8s 2 z s z 8r)

z 2r 1 s 1 z 82r 1 s 1 1±2 Nr, r 1 s( z r z 8r 1 s 2 z r 1 s z 8r)

1
1

12 Nr, sNr, r 1 s( z 2
r z 8s 2 z s z 82

r ) 2
g . G2:

( z % z 8) 5 1
z r 1 z 8r

z s 1 z 8s

z r1 s 1 z 8r 1 s 1 1±2 Nr, s( z rz 8s 2 z s z 8r)

z 2r 1 s 1 z 82r 1 s 1 1±2 Nr, r 1 s ( z r z 8r 1 s 2 z r 1 s z 8r)

1
1

12 Nr, sNr, r 1 s( z 2
r z 8s 2 z s z 82

r )

z r 1 2s 1 z 8r 1 2s 1 1±2 Ns, r 1 s( z s z 8r 1 s 2 z r 1 s z 8s )

1
1

12 Nr, sNs, r 1 s( z 2
s z 8r 2 z r z 82

s ) 2
This example shows how the noncommutativity of the algebra induces a

deformation of the addition in z -space.

Let us go back to the definition of V b
a (x). We have
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e S a P D 1 z a ade a e t ad e b 5 e t S g P D 1 V
g
b (x) - g 1 O(t

2
) e S a P D 1 z a ade a (81)

From this we see

o
g P D 1

V g
b (x) - g | z 8 & 5

-
- t Z t 5 0

x ( z )e t ad e a | ( 2 z ) % z 8 & (82)

and the matrix elements then become

^ z 9 | o
g P D 1

V g
b (x) - g | z 8 & 5

-
- t Z t 5 0

^ z 9 | z % t (t) % ( 2 z ) % z 8 & (83)

where t a (t) 5 t d a b . One should note that the deformed sum is associative

but not in general commutative. We can also use the Chevalley involution

to rewrite this as

^ z 9 | o
g P D 1

V g
b (x) - g | z 8 & 5 ^ z 9 % ( 2 z ) |

-
- t Z t 5 0

| t (t) % ( 2 z ) % z 8 & (84)

which is somewhat more symmetrical.

We can also use our normalization polynomial p to write

^ z 9 | o
g P D 1

V g
b (x) - g | z 8 & 5

-
- t Z t 5 0

p ( z 9, z % t (t) % ( 2 z ) % z 8)

5
-
- t Z t 5 0

p ( z 9 % ( 2 z ), t (t) % ( 2 z ) % z 8) (85)

This is our final result. It gives an explicit, intrinsic expression for the matrix

elements of the vertex operator in the space of generalized coherent states.

The differential operator realization we found here agrees with the usual

one, as one can see by considering, for instance, the case of g 5 A1, where

we get

E 5
-
- z

, F 5 z 2 -
- z

2 z l , H 5 2 2 z
-
- z

1 l (86)

We will not list the realizations of the remaining semisimple Lie algebras of

rank # 2, A2, B2, G2. Instead we will just consider one more example, namely

the Heisenberg algebra h1. In this case we get

p 5
-

- z p
1 z q

-
- z 1

, q 5
-

- z q
2 z p

-
- z 1

, i " 1 5
-

- z 1

(87)

This is a slightly unexpected realization, but one quickly sees that it satisfies

the correct commutator relations. On the subspace of C [[ z p , z q , z 1]], where
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( - / - z 1) f ( z ) 5 kf( z ) with k some constant and f an arbitrary function, we get

the more familiar realization p 5 - 1 z k, q 5 - Å 2 z k, i " 1 5 k, where we

have written z 5 z p , z 5 z q to emphasize the analogy with complex analysis.
This particular realization also clearly shows the Heisenberg algebra as a

central extension of an Abelian Lie algebra.

Once one has the analogy with creation and annihilation operators (the

root decomposition) and furthermore the realization in terms of differential

operators acting on some ª Fock spaceº (through the coherent states), it is

obvious to look for realizations in terms of quantum fields, too.
In analogy with CFT we will then look for free field realizations of g,

i.e., look for (bosonic) fields f i ( j ) and (bosonic) ghosts b a ( j ), g a ( j ), where

j P G is an element in some parameter space G . These fields are then

substituted for - a , z a , l i in the following way:

- a j b a ( j ), z a j g a ( j ), l i j ! t - f i ( j ) (88)

where t is some real number and - f denotes the derivative of f with respect

to j . Given some ordering : ? :, we then look for realizations

E a 5 :V b
a ( g ( j )) b b ( j ): (89)

F a 5 :V b
2 a ( g ( j )) b b ( j ): 1 P j

2 a ( g ( j )) ! t - f j ( j ) 1 ^ a ( g ( j ), - g ( j )) (90)

H i 5 :V b
i ( g ( j )) b b (gj): 1 ! t - f i ( j ) (91)

the function ^ a is a possible anomalous term. For affine Kac±Moody algebras

this construction is well known (Wakimoto realization), and in this case G 5
C . The anomalous term ^ a is known to be (Bouwknegt et al., 1990 a,b), for

a primitive root a i (the general result can be found in the reference)

^ a i 5 1 k 1 t

( a i | a i)
2 1 2 - g a i(z) (92)

The only difference in our case is the explicit appearance of the adjoint
representation instead of some formal exponential, e xe a .

For finite-dimensional Lie algebras, we will expect dim G # 1, i.e., we

have a zero- or one-dimensional field theory. For nonaffine Kac±Moody

algebras we would expect dim G $ 2, but we will not be able to prove this.

Due to a lack of knowledge about nonaffine Kac±Moody algebras we will

restrict ourselves to finite-dimensional Lie algebras, semisimple or not.
Consider then a finite-dimensional Lie algebra g. We want to write

down a free field realization aÁ la Wakimoto for this. The parameter space G
will be taken to be the discrete set Z , i.e., dim G 5 0. The analogy with the

OPEs of the affine Kac±Moody algebra case is then
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E a (n)E b (m) 5 d nmN a , b E a 1 b (93)

E a (n)F a (m) 5 d nm a iHi(n) (94)

Hi(n)Hj(m) 5 0 (95)

Hi(n)E a (m) 5 d nmAi a E a (n) (96)

Hi(n)F a (m) 5 2 d nmAi a F a (n) (97)

and so on. A note about the notation: the d nm need not be the actual Kronecker

delta, it is merely a ª reproducing kernelº in the sense that it acts like a
Kronecker delta

o
n

f (n) d nm 5 f (m) " f (98)

just like the (z 2 w) 2 1 in the affine Kac±Moody algebra acts like a Dirac

delta function

R f (z)

z 2 w

dz

2 p i
5 f (w)

In analogy with the affine Kac±Moody algebra case we have not written the
ª nonsingular terms,º i.e., the terms which are not proportional to ( d nm)k for

some k . 0.

Next, we want to introduce free ª fieldsº (since dim G 5 0 we are

actually working with quantum mechanics rather than quantum field theory)

- b j b b (m), z a j g a (m), l i j ! t d f i (n) (99)

where

b a (n) g b (m) 5 d nm d a , b (100)

f i (n) f j (m) 5 k ( a Ú
i | a Ú

j ) D nm (101)

d f i (n): 5 f i (n 1 1) 2 f i (n) (102)

d D nm 5 f nm (103)

Here k is some constant.

The question is then whether anomalous contributions come into play

like they do in the infinite-dimensional case. In fact they have to, for the

very same reasons as in the infinite-dimensional case, namely because of the

l i part of F a , which becomes proportional to the bosonic field f i in the
Wakimoto realization. An extra term is then needed to compensate for the

f i f j contribution to the OPEs, i.e., it must contain a d g contribution. Straight-

forward computation yields the same result as for the affine Kac±Moody

algebra case, since this only uses the root decomposition.
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4. CONCLUSION

We have generalized the notion of coherent states from the harmonic

oscillator using an analogy with the GNS construction for C*-algebras. The
resulting procedure is constructive and allowed us to handle not only semisim-

ple Lie algebras, but also nonsemisimple ones, even those corresponding to

noncompact Lie groups such as su(1, 1), so(2, 1), so(3, 1), etc. Furthermore,

affine as well as nonaffine Kac±Moody algebras could be treated with this

procedure, too.
The only ingredient in the procedure is the Lie algebra structure, put

more precisely, a root decomposition, the structure constants Nr,s, and the

Cartan matrix. The representation used was the natural one, i.e., the adjoint

representation acting on the underlying vector space of the algebra.

In this way, a coherent state becomes a vector-valued function, and the

set of these states are C (( z )) ^ F d, with d 5 dim g, for finite-dimensional
Lie algebras, whereas for affine Kac±Moody and loop algebras formed from

some finite-dimensional Lie algebra g, the set of coherent states spans C ` (S 1)

^ C (( z )) ^ F d, i.e., the corresponding loop space.

The advantage of the proposed construction is the nilpotency of the

adjoint representation, for semisimple algebras, making the space of coherent

states finite dimensional, namely simply C ( z ) ^ F d.
We finally defined differential operator and free field realizations of the

algebras in analogy with what is done for affine Kac±Moody algebras in

conformal field theory.
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